首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38621篇
  免费   4438篇
  国内免费   2848篇
电工技术   971篇
综合类   2034篇
化学工业   8641篇
金属工艺   4398篇
机械仪表   1204篇
建筑科学   2273篇
矿业工程   720篇
能源动力   1447篇
轻工业   1424篇
水利工程   261篇
石油天然气   317篇
武器工业   508篇
无线电   4365篇
一般工业技术   14273篇
冶金工业   2029篇
原子能技术   370篇
自动化技术   672篇
  2024年   68篇
  2023年   927篇
  2022年   907篇
  2021年   1391篇
  2020年   1650篇
  2019年   1447篇
  2018年   1328篇
  2017年   1463篇
  2016年   1388篇
  2015年   1435篇
  2014年   2041篇
  2013年   2235篇
  2012年   2462篇
  2011年   3245篇
  2010年   2340篇
  2009年   2512篇
  2008年   2269篇
  2007年   2656篇
  2006年   2353篇
  2005年   2166篇
  2004年   1757篇
  2003年   1584篇
  2002年   1166篇
  2001年   858篇
  2000年   734篇
  1999年   566篇
  1998年   527篇
  1997年   398篇
  1996年   342篇
  1995年   271篇
  1994年   282篇
  1993年   202篇
  1992年   172篇
  1991年   165篇
  1990年   144篇
  1989年   132篇
  1988年   55篇
  1987年   33篇
  1986年   35篇
  1985年   31篇
  1984年   49篇
  1983年   22篇
  1982年   35篇
  1981年   12篇
  1980年   13篇
  1979年   11篇
  1975年   3篇
  1974年   3篇
  1955年   4篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Orthorhombic-structured CaIn2O4 ceramics with a space group Pca21 were synthesized via a solid-state reaction method. A high relative density (95.6 %) and excellent microwave dielectric properties (εr ~11.28, Qf = 74,200 GHz, τf ~ ?4.6 ppm/°C) were obtained when the ceramics were sintered at 1375 °C for 6 h. The dielectric properties were investigated on the basis of the Phillips–Van Vechten–Levine chemical bond theory. Results indicated that the dielectric properties were mainly determined by the InO bonds in the CaIn2O4 ceramics. These bonds contributed more (74.65 %) to the dielectric constant than the CaO bonds (25.35 %). Furthermore, the intrinsic dielectric properties of the CaIn2O4 ceramics were investigated via infrared reflectivity spectroscopy. The extrapolated microwave dielectric properties were εr ~10.12 and Qf = 112,200 GHz. Results indicated that ion polarization is the main contributor to the dielectric constant in microwave frequency ranges.  相似文献   
12.
Cellulose nanocrystals (CNCs) are a kind of sustainable nanoparticle from biomass, which are widely used as reinforcing filler and assembly building block for high-performance composites and function materials including biomaterial, optics, and so forth. Here, their unique advantages in material applications were reviewed based on their rod-like morphology, crystalline structure, dimension-related effects, and multi-level order structure. Then, we focused on the molecular engineering of CNCs, including the structure and physicochemical properties of their surface, along with surface modification methods and steric effects. We further discussed the performance-improvement and functionalization methods based on multi-component complex systems, together with the effects of surface molecular engineering on the performance and functions. Meanwhile, methods of optimizing orientation in uniaxial arrays were discussed along with those of enhancing photoluminescence efficiency via surface chemical modification and substance coordination. In the end, we prospected the design, development, and construction methods of new CNCs materials.  相似文献   
13.
Portlandite (Ca(OH)2; also known as calcium hydroxide or hydrated lime), an archetypal alkaline solid, interacts with carbon dioxide (CO2) via a classic acid–base “carbonation” reaction to produce a salt (calcium carbonate: CaCO3) that functions as a low-carbon cementation agent, and water. Herein, we revisit the effects of reaction temperature, relative humidity (RH), and CO2 concentration on the carbonation of portlandite in the form of finely divided particulates and compacted monoliths. Special focus is paid to uncover the influences of the moisture state (i.e., the presence of adsorbed and/or liquid water), moisture content and the surface area-to-volume ratio (sa/v, mm−1) of reactants on the extent of carbonation. In general, increasing RH more significantly impacts the rate and thermodynamics of carbonation reactions, leading to high(er) conversion regardless of prior exposure history. This mitigated the effects (if any) of allegedly denser, less porous carbonate surface layers formed at lower RH. In monolithic compacts, microstructural (i.e., mass-transfer) constraints particularly hindered the progress of carbonation due to pore blocking by liquid water in compacts with limited surface area to volume ratios. These mechanistic insights into portlandite's carbonation inform processing routes for the production of cementation agents that seek to utilize CO2 borne in dilute (≤30 mol%) post-combustion flue gas streams.  相似文献   
14.
The morphotropic composition of the lead-free solid solution between Na0.5Bi0.5TiO3 and BaTiO3 (0.94 Na0.5Bi0.5TiO3-0.06 BaTiO3 or NBT-6BT) is of particular interest for the next generation of high-temperature capacitors but remains plagued by the diversity of dielectric properties reported in the literature. In order to explain the apparent inconsistencies among the reported dielectric properties of NBT-6BT, we examine the influence of stoichiometry, phase separation, and metallization method. We show that the nominal stoichiometry has a crucial effect, since increasing the nominal Na/Bi ratio increases conductivity and dielectric losses (tan δ). It also increases the real part of the permittivity (ε’) and the frequency dispersion of both ε’ and tan δ, thereby altering the shape of the evolution with temperature of the dielectric properties. Moreover it increases the depolarization temperature (Td) and decreases the temperature of maximum permittivity (Tm). Phase separation also occurs during the synthesis of NBT-6BT as Na evaporation leads to the formation of secondary Ba-containing phases. We report that these phases can have a positive impact on the dielectric properties: a moderate volume fraction (2.5 to 3.0%) and average grain surface (0.9 to 3.0 µm2) of these secondary Ba-containing phases increase the relative permittivity, decrease the dielectric losses, and increase the insulation resistance. We also show that the metallization method impacts the dielectric properties and therefore may contribute to the differences between various reports. The dielectric properties of NBT-6BT samples are measured during successive heating/cooling cycles and reveal that the permittivity value is lower during the first heating when silver paste, even cured, is used. These three components contribute to explaining the diversity of the reported dielectric properties of NBT-6BT.  相似文献   
15.
Radicals are closely related to human life and health and have been widely used in biology, chemistry, functional materials, etc. However, the high reactivity, disorder, and short half-lives limit their wide applications. Therefore, it remains a great challenge to prepare stable and ordered radicals. Herein, radicals are prepared with protective umbrellas (diethylmethyleneamine, DEMA) that are integrated on the surface of 2D layered materials to isolate water and oxygen and enhance the stability of radicals. Taking 2D black phosphorus (BP) as an example: triethylamine reacts with dichloromethane to form quaternary ammonium salts with further Hoffmann elimination to produce DEMA radicals that could react with one electron of a lone pair electrons in P on the surface of BP to produce P radicals, which shows a prolonged half-life of 21 days at room temperature. First-principle calculations and electron paramagnetic resonance fitting confirm that the steric hindrance constructed by dense DEMA passivation layer acts as a protective umbrella and the 2D coupling of P radicals and other P atoms in 2D BP plane to enhance the stability and strong superexchange interaction of P radicals. Furthermore, it is a general strategy to produce stable radicals integrated on the 2D plane.  相似文献   
16.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
17.
Graphene-based heterostructure composite is a new type of advanced sensing material that includes composites of graphene with noble metals/metal oxides/metal sulfides/polymers and organic ligands. Exerting the synergistic effect of graphene and noble metals/metal oxides/metal sulfides/polymers and organic ligands is a new way to design advanced gas sensors for nitrogen-containing gas species including NH3 and NO2 to solve the problems such as poor stability, high working temperature, poor recovery, and poor selectivity. Different fabrication methods of graphene-based heterostructure composite are extensively studied, enabling massive progress in developing chemiresistive-type sensors for detecting the nitrogen-containing gas species. With the components of noble metals/metal oxides/metal sulfides/polymers and organic ligands which are composited with graphene, each material has its attractive and unique electrical properties. Consequently, the corresponding composite formed with graphene has different sensing characteristics. Furthermore, working ambient gas and response type can affect gas-sensitive characteristic parameters of graphene-based heterostructure composite sensing materials. Moreover, it requires particular attention in studying gas sensing mechanism of graphene-based heterostructure composite sensing materials for nitrogen-containing gas species. This review focuses on related scientific issues such as material synthesis methods, sensing performance, and gas sensing mechanism to discuss the technical challenges and several perspectives.  相似文献   
18.
Hydrogen adsorption performance and mechanism upon cycling of the upscaled Ni-doped hierarchical carbon scaffold (HCS) are investigated. Upon 22 hydrogen ad/desorption cycles (T = 25–50 °C and p (H2) = 1–50 bar), the upscaled Ni-doped HCS shows excellent cycling stability with gravimetric capacity of up to 1.51 wt % H2. This is due to mechanical stability of HCS and good distribution of Ni nanoparticles. Hydrogen adsorption mechanism of Ni-doped HCS upon cycling is experimentally and theoretically characterized. Besides dissociative adsorption onto the surface, hydrogen diffusion into the lattice structure of Ni is observed. The latter enhances with the number of ad/desorption cycles and alters the electron sharing mechanisms between Ni and H during adsorption.  相似文献   
19.
In this study, first-principles calculations were performed to investigate the catalytic effect of NiN4-G on the dehydrogenation of MgH2. Side-on MgH2 can be adsorbed stably on the NiN4-G monolayer and is preferentially adsorbed on the NiN4 site compared with the graphene site. The hydrogen desorption process, in which MgH2 dissociated to the Mg atom on the NiN4 site or graphene site and an H2 molecule in the vacuum, should overcome lower barriers than pure MgH2. This is because the corresponding Mg–H bond is weakened owing to the electron transfer between the Mg atom and the substrate. The hydrogen desorption enthalpies of the (MgH2)5 cluster on the NiN4 active and graphene sites are significantly smaller (0.11 eV and 1.50 eV, respectively) when H2+H2 is released from the cluster compared with those of the undoped MgH2 cluster (2.48 eV). Therefore, the NiN4-G monolayer can provide the double effect of the NiN4 active and graphene sites on improving the dehydrogenation performance of MgH2.  相似文献   
20.
《Ceramics International》2022,48(6):7533-7549
(1-x)SrFe10Al2O19/(x)Co0.6Zn0.4Fe2O4-(SFAO/CZFO) hard/soft nanocomposite ferrite materials were synthesized by ‘one-pot’ self-propagating combustion route. The co-existence of the two magnetic phases were confirmed by XRD, FESEM, EDS and VSM. The prepared nanocomposite samples were also characterized by TGA/DSC, Raman spectroscopy and VNA. Exchange coupling between the hard and the soft magnetic grains was observed by determining the switching field distribution (SFD) curve. As a result of the competing effects of exchange interaction and dipolar interaction, magnetic parameters were observed to be sensitive to the incorporation of soft magnetic phase into the nanocomposite. Results showed that with the inclusion of soft magnetic phase, exchange coupling behaviour between the hard and the soft ferrite phases had significant influence on the microwave absorption capacity of the samples. Related electromagnetic parameters and impedance matching ratio of the nanocomposite system were discussed. A minimum reflection loss of ?42.9 dB with an absorber thickness of 2.5 mm was attained by the nanocomposite (90 wt%)SrFe10Al2O19/(10 wt %)Co0.6Zn0.4Fe2O4 at a matching frequency of 11.45 GHz. This assured the candidacy of SrFe10Al2O19/Co0.6Zn0.4Fe2O4 nanocomposite as a promising microwave absorption material in the X-band (8–12 GHz).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号